EE 527 MICROFABRICATION

Lecture 26 Tai-Chang Chen University of Washington

3-ZONE HORIZONTAL FURNACE TUBE -ATMOSPHERIC

4-TUBE SEMI-PRODUCTION FURNACE STACK

• Laminar bench loading area with automatic boat loaders:

© UWEE TC Chen

Winter 2014

TUBE FURNACE QUARTZWARE

- "Quartzware" is actually fused silica (SiO₂), a glass, not a crystal.
- Fused silica can normally withstand temperatures up to ~1800°C.
- The high purity of the silica allows it to introduce minimal contamination to wafers being processed in the furnace.
- However, at the high temperatures of a furnace, alkali cations can very rapidly diffuse through fused silica.
 - A single fingerprint on the outside of a fused silica tube can contribute enough Na⁺ ion to completely contaminate a furnace tube.
 - A tube that has been contaminated in this way has to be discarded! (\$\$\$)
 - The diffusion coefficient for Na⁺, K⁺, and Li⁺ through SiO₂ at ~1000°C is high enough that it only takes ~30-60 seconds for these ions to diffuse through a 3 mm thick tube wall.
- All furnace quartzware MUST be handled ONLY with clean gloves.

WASHINGTON © UWEE TC Chen Winter 2014

QUARTZWARE WAFER BOATS

- Boats usually hold up to one cassette of 25 wafers.
- Boats must be matched to the wafer size: 3, 4, or 6-inch.
- Boats are hand loaded, so care must be taken to insure each wafer is properly slotted.

© UWEE TC Chen

Winter 2014

HEATING MANTLES

- Used for heating laboratory glassware, most commonly closed-top vessels with standard taper (ST) ground glass fittings.
- Commonly used in distillation apparatus and steam boilers.
- Must be sized to the flask being used.
- Must be used with a power controller or variac.
 - Never directly connect to 120VAC line power!

© UWEE TC Chen

HEATING MANTLE STEAM BUBBLER FOR OXIDATION FURNACE

- This system uses standard taper glassware with teflon valves and tubing connections.
- Note temperature sensor in the thermometer well for closed-loop control of water temperature.
- The bypass line around the bubbler allows both wet and dry oxidation to be performed using the same furnace tube system.

© UWEE TC Chen

Winter 2014

FURNACE CONTROL SYSTEM

• Typical of most fabrication process control systems:

© UWEE TC Chen

AUTOMATIC TUBE FURNACE GAS PANEL

© UWEE TC Chen

Winter 2014

TIME – TEMPERATURE PROFILES

- All thermal processing steps need to be engineered around a time temperature schedule which forms the core recipe.
- Elements of a time temperature schedule:
 - Ramps periods of controlled heater power increase or decrease to move the temperature up or down at a prescribed rate
 - Stabilization periods to allow equilibration of temperatures and thermally induced stresses; maximum rates are needed to avoid thermal shock
 - Processing periods, e.g. oxidation, nitridation, reducing; often switched on and off by gas flow changes
 - Ramps (down)- periods of controlled heater power increase or decrease to move the temperature up or down at a prescribed rate.
 - Load / unload periods and timing within the schedule

© UWEE TC Chen

TYPICAL TUBE FURNACE WET OXIDATION RECIPE

USES OF VACUUM IN MICROFABRICATION

Rough Vacuum

wafer chucks load locks

sputtering reactive ion etching (RIE) low pressure chemical vapor deposition (LPCVD) High Vacuum evaporation ion implantation <u>Ultra-High Vacuum</u> surface analysis molecular beam epitaxy (MBE)

UNITS OF PRESSURE MEASUREMENT

• 1 atmosphere =

- 760 mm Hg = 760 torr
- 760,000 millitorr or microns
- 29.9213 in. Hg
- 14.6959 psi
- 1.01325 bar
- 1013.25 millibar
- 101,325 pascals (Pa)
- 407.189 in. H₂O
- 33.9324 ft. H₂O

 $\begin{array}{l} 1 \text{ Pascal} = 1 \text{ N/m}^2 \\ 1 \text{ torr} = 1 \text{ mm Hg} \\ 1 \text{ micron} = 1 \text{ } \mu\text{m Hg} \end{array}$

WASHINGTON

Winter 2014

760 mm Hg

33.93 ft H₂O

VACUUM RANGES

- Low or Rough Vacuum (LV)
 - 760 to 1 torr
- Medium Vacuum (MV)
 - 1 to 10⁻³ torr
- High Vacuum (HV)
 - -10^{-3} to 10^{-7} torr
- Ultra-High Vacuum (UHV)
 - -10^{-7} to 10^{-12} torr

© UWEE TC Chen

PARTIAL PRESSURES OF GASES IN AIR AT STP

Gas	Symbol	Volume Percent	Partial Pressure, Torr
Nitrogen	N ₂	78	593
Oxygen	O ₂	21	159
Argon	Ar	0.93	7.1
Carbon Dioxide	CO ₂	0.03	0.25
Neon	Ne	0.0018	1.4 x 10 ⁻²
Helium	He	0.0005	4.0 x 10 ⁻³
Krypton	Kr	0.0001	8.7 x 10 ⁻⁴
Hydrogen	H ₂	0.00005	4.0 x 10 ⁻⁴
Xenon	Xe	0.0000087	6.6 x 10 ⁻⁵
Water	H ₂ O	Variable	5 to 50, typ.

Standard Temperature and Pressure (STP): 0°C and 1 atm.

© UWEE TC Chen

Winter 2014

VAPOR PRESSURES OF GASES

© UWEE TC Chen

VACUUM PUMP PRESSURE RANGES

VACUUM PUMPS

- Two fundamental types:
 - Concentration pumps
 - Gas entering the inlet is compressed and expelled out an outlet
 - Can run continuously
 - Entrainment pumps
 - Gas entering the inlet is trapped inside (no outlet!)
 - Must be regenerated to empty the trapped gas

© UWEE TC Chen

ROTARY VANE MECHANICAL PUMPS - 1

ROTARY VANE MECHANICAL PUMPS - 2

- Gases are removed by compressing them slightly above atmospheric pressure and then forcing them through a check valve.
- The rotary vane modules are immersed in an oil bath.
- The purpose of the oil is to:
 - cool the pump
 - lubricate the rotary vanes
 - provide a lip seal for the vanes
 - open the second stage exhaust valve at low inlet pressures
- They are powered by an electric motor:
 - Belt drive: 250 to 400 rpm
 - Direct drive: 1725 rpm (most common type)

© UWEE TC Chen